Optical Monte Carlo Iin
LarSoft : Update
14 April 2010

Ben Jones, MIT

Since Last Time:

Finished OpticalMCOutput Class
Mostly useful for debugging, building per-photon Ttrees at global scope from several
modules on-the-fly

Added LarG4Parameters Class
To transfer config dependent parameters from LarG4 to other modules. Singleton
class which takes data from the config selected by jobcontrol and makes them
accessible at LArG4 scope

Updated MaterialPropertyLoader Class
Now can specify different momentum points for each material property to be loaded

Worked on Putting Optical Components into the Simulation
Most of this talk...

Daydreamed about and discussed XMLMaterialPropertyLoader
But not started implementation yet

OpticalMCOutput and LArG4Parameters

Configurable Physics Only the LarG4 object knows the config
List Stuff version to read as passed by jobcontrol.

| Hence objects not directly referenced by
LarG4 can't get config specific parameters

OpticalPhysics
LArG4

BoundaryPr S

Op UMERIIFOEEE Individual Ttrees, histograms,
1 etc. No good for comparative

OpticaIMCWatcher analysis from different

processes, etc

PMTSensitiveDetector ‘

etc

I LARSOFT
UserAction

GEANT4

Connected to
event loop

OpticalMCOutput and LArG4Parameters

Configurable Physics

List Stuff v\
|
OpticalPhysics LArG4 -«

Singleton, can be accessed at
~any time by any module

OpBoundaryProcess | LArG4Parameters

I Coherent per-photon and per-

event ttrees, with branches that
OpticalMCWatcher can be added by any module at

any time

1

PMTSensitiveDetector N OpticalMCOutput 4’
1
etc
UserAction
GEANT4

Connected to
event loop

A Pretty Picture From OpticalMCOutput

y/mm z/mm

35ﬂﬂ_||||||||||||||||||| TTT T[T TrTrIrrT T _llllllllllllllllll IIIIIIIIIIIIII_
3uuu5 T T 4 12000— : —
- ’/"f = I ’ S .]
2500 i//f 4 10000— ool —
2000~ / = i -
. rf] 8000 — —
1500 |] - .
- . 6000— 7]

1000 | = [&
5005\ 2 4000 .
=N ; _— ,
ﬂ__ R —] - -
- . 3 2000 —
-500F ' . L i
_1uuu:||||||||||||| ||||||| |||||| ||||||| ||||||: ul, ||||||||||||||||||||| ||||||||||||I||||
-2000-1500-1000-500 0 500 1000 1500 2000 -2000-1500-1000-500 0 500 1000 1500 2000

Xx/mm x/mm

Photons absorbed at surface with known properties
Photons absorbed at surface with unknown properties

Optical Components

Broadly speaking, 4 optical components may important for
microboone. In order of decreasing importance:

PMT's, Wavelength Shifting Plates, Underway

Reflectors, Waveguies Not yet started,
but easy
(hopefully)

And for each component, need to

1) Define optical properties, physics processes,

hit recording / sensitivity, etc of each component ~ nde™ay

2) Insert relevant volumes into the geometry in Not sure how to
realistic positions approach this...

PMTs

For testing purposes, the following geometry is used to represent a super-simplified PMT:

TPB Plate
A volume with material "TPB”

PMTLens

A volume with name containing
"PMTLens”, which is associated
with a sensitive detector in the
DetectorConstruction module

Currently use cylindrical geometries, but the shape doesn't matter to the implementation

PMT's — Detector Construction Time

microboone.gdml PMTLookup

GDML Detector definition
Stores a reference to each

PMT physical volume placed and a

. corresponding PMT ID for generating
DetectorConstruction hits later

PMTSensitiveDetector

\J During detector construction, every
volume with a name including
\ "PMTLens” is associated with the PMT

SensitiveDetector which generates
hits

G4Physical

Volumes,

etc

4

PMT's — Simulation Time

PMTLookup

If a photon is detected
by the sensitive
detector, supply the
PMT ID corresponding

to the physical volume

PMTSensitiveDetector -

Generate one of the
\ following types of hit

PMTHitSimple

PMTHitAllPhotons

collection — currently Other?
two defined, see next
. slide
G4Physical PMTHit
Volumes,
G4VHit
etc

4

PMTHIt Definitions

The PMTSensitiveDetector produces a collection of PMTHits to store in the event,
one PMTHit per PMT

Currently, the only necessary method of PMTHit is AddPhoton. This accepts photon
momentum, position and tracklD and uses it to store some kind of local data inside
the hit

There are currently two implementations of PMTHit, more can be defined in the future

At the moment, the sensitive detector produces one of the two. Any call for
generating more than one set?

PMTHitSimple PMTHitAllIPhotons
Stores: Stores:
Summed energy of photons std::vector of a struct containing
Number of photons detected 4-momentum of incident photon
4-position of incident photon
Optionally over a threshold tracklD of incident photon

Digitisation / pulse shape

Schematic of my current
knowledge of how to do this

part of the simulation \

TPBPlate

In the gdml file, defined material TPB. Defined volumes of this material in the
geometry definition (called TPBPlate1, TPBPlate2, etc)

In OpticalPhysics physics list, added process G4OpWLS

In DummyMaterialPropertyLoader, added absorption spectrum, emission
spectrum, time constant and mean photon yield for the wavelength shifting
process in TPB

100 -

90 -
80 4
As with all optical processes, finding the A |4 E—
correct parameterisations to use is an I | i\
ngoing project k- | .
ongoing proj 1 A ;
i \\ TPB :
;o Absorpti ! \
o{ | Absorption) i
' : P | \
As yet | haven't fully tested this process — 20 14— '
trying to get output from PMT's first L :
] i’
0+
100 150 200 250 300 350 400 450 500 550

Wavelength (nm)

GDML, Defining geometry

Now most physics microboone.gdml
processes and optical <tube name="PMTLens"

rmax="(100)"

components are in z="(5)"

deltaphi="2*(3.1415926535897)"

place, we need to aunit="rad"

lunit="cm"/>

place them in correct <tube name="TPBPlate"

. rmax="(100)"
spots in the geometry. 2="(1)"
deltaphi="2*(3.1415926535897)"
aunit="rad"
H OW? ‘? lunit="cm"/>
<tube name="TPCWireVert"
rmax="0.5%(0.015)"
z="(256)"
deltaphi="2*(3.1415926535897)"
aunit="rad"
lunit="cm"/>
<box name="TPCPlaneVert"
x="(0.15*(2.54))"
y="(256)"
z="(1200)"
lunit="cm"/>
<tube name="TPCWire0"

<fIxi09.fnal.gov> wc microboone.gdml -

41593 microboone.gdml

XMLMaterialPropertyLoader

This has been a feature of EVERY talk I've given on LarSoft. Usually | say I'm
working on it. I'm actually not working on it.

This is because using the FMWK xml parsing scheme, it will be very tedious, and
right now the return seems limitted.

A similar problem was solved for KATRIN by developping a new xml parsing method.
| would like to implement this method in LarSoft using a library written by Dan Furse
at MIT.

In this new scheme, clever templating is used to load a predefined xml schema into a
heirachy of C++ objects which directly corresponds to that schema. This makes the
task trivial.

The library is ready to go, and could be used easily in LarSoft.

Templated xml parsing

My materials xml file

<materialdoc>
<material name = "LAr’>

<varproperty name ="RAYLEIGH” unit = "cm”> My schema definition,
Rayleigh scattering length in liquid argon in text file
<value momentum=9.5> 90 </value>
<value momentum =9.7 > 91 </value>
<value momentum=9.9> 92 </value>

</property>

<constproperty name = "FASTTIMECONSTANT” unit = "ns”>
Fast time constant for scintillation in liquid argon

<value> 6 </value>
</property> ><
</material>

c/o xml parser

C++ Object heirachy in LArSoft. X

|
materialdoc->get_material("LAr”)->get_property("RAYLEIGH”)->get_value(9.7)

* -this is neither real xml nor the objects will really look. But it gives an idea.

Summary

Since the last time | presented, there has been a lot of progress on
OpticalMC

Can generate per photon or per event ttirees with OpticalMCOutput
for easy debugging / analysis

Can pass parameters around LarG4 with LarG4Parameters

PMT sensitive detector defined, which creates and stores PMTHits
Two types of PMTHit defined, still more flexibility allowed

TPB plate processes attached to TPB material and optical physics list
A plan of attack in place for XMLMaterialPropertyLoader

Still lots of work to do.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

